Synthesis and Characterization of Fluorescent Rosette Nanotubes*

Belete A. Legesse

Department of Chemical Engineering, Northeastern University, Boston, MA, USA

February 13th, 2015 11:45 am, 312 Ell Hall

Rosette nanotubes (RNTs) are novel soft organic nanomaterials composed of a guanine-cytosine hybrid (G+C) building block that self-assembles in aqueous environments into stable nanotubes decorated with chemical functionalities on the periphery. These materials have substantial design flexibility and a range of applications, which are partly attributed to their diverse surface functionalization. Since their first development in the Fenniri group,1 several studies established their applications as coatings for medical devices, materials for tissue engineering and drug display/delivery.2,3,4

In an effort to reduce the synthetic effort for producing self-assembling G+C modules for large scale production of RNTs, we have developed an efficient synthetic strategy and self-assembly protocols based on a new G+C derivative 2, an analogue of 1 that differs by the substitution at the N-atom in the G-ring with a C-atom.5 In this talk, we present the synthesis of the tricyclic G+C base 3 from R\textsubscript{3} functionalized motif 2 that can form fluorescent RNTs in N,N-dimethylformamide (DMF). The self-assembly of 3 into RNTs was established using scanning electron microscopy, transmission electron microscopy, atomic force microscopy and UV-Vis spectroscopy. Fluorescence properties of RNTs in DMF will also be presented.

* This work is supervised by Prof. Hicham Fenniri, Northeastern University, Boston, MA, USA.
References

