Biological Engineering

Engineering Biological Systems for Medicine and Better Health

Chemical Engineering principles provide a toolbox ideal for engineering medical tools and biochemical processes to improve medical treatment and quality of life. This toolbox is extremely well suited for the quantitative analysis and design of biological systems. For example, kinetics of biological reactions, mass transfer of biological molecules through tissues, fluid dynamics of biological fluids such as blood, and interfacial phenomena at the interface between biomaterials and cells are all topics central to field of Chemical Engineering. In the Northeastern University Chemical Engineering Department, our bioengineering research spans several cutting-edge research areas:

Metabolic Engineering

Metabolic engineering embodies the principles, framework, and methodologies for understanding and manipulating the reaction networks within the cell for targeted and improved chemical transformations. At Northeastern, metabolic engineering are applied to improving the production of important compounds from plants or plant cell cultures. Our main research focus is the production of valuable pharmaceutical compounds from plant cell cultures, specifically the production of important anti-cancer drug molecules from cell cultures of Catharanthus roseus. The overall vision of our research is to meet the needs and demands of important and cost-prohibitive plant-derived pharmaceuticals and ultimately develop an economically viable process using plant cell culture.

Drug Delivery Systems

Drug delivery technologies are essential to effective therapy as they can control the rate and concentration at which drugs reach target sites in the body. We are conducting mechanistic studies and developing computational models to understand and predict drug transport in the biological drug delivery environment.


Technologies from the semiconductor industry have allowed the development of new tools in recent years. Biological micro-electromechanical systems (BioMEMS) are devices that use the advantage of small size to tackle problems such as the isolation of pure subpopulations of cells, analysis and biochemistry of cells at the single-cell level, and nanoscale perturbation of cells and other biological entities.


Research in this area is focused on the synthesis and characterization of new materials for various biological applications such as passivation coatings on prosthetic devices, “intelligent” materials that respond to biological stimuli, and biodegradable polymers used in drug delivery applications. These efforts draw on the expertise available in the department in field of advanced materials.

fac Dr. Anand Asthagiri
Associate Professor

The Asthagiri lab elucidates design principles for engineering living cells and tissues. These design principles provide a foundation for tissue engineering and regenerative medicine.

fac Dr. Rebecca L. Carrier
Associate Professor

The overall theme of my research interests is the interaction between biological systems and materials, with specific applications in drug delivery and regenerative medicine.

fac Dr. Arthur Coury

Polymeric biomaterials for medical products such as implantable electronic devices, hydrogel-based devices and drug delivery systems.

fac Dr. Eno Ebong
Assistant Professor

Study the means by which endothelial cell mechanotransduction occurs in order to prevent or promote atherosclerosis.

fac Dr. Hicham Fenniri

Nanotechnology for biomedical applications, Nanoscale materials for drug delivery, and Cell therapeutics and regenerative medicine.

fac Dr. Edgar D. Goluch
DiPietro Assistant Professor

Dr. Goluch’s research focuses on detection of biomolecules at the nanoscale, specifically inside micro and nanofluidic channels. This expertise is applied to a broad range of scientific fields including: biophysics, micro and systems biology, ecology, environmental sensing, and analytical instrumentation.

fac Dr. Carolyn W. T. Lee-Parsons
Associate Professor

My main research focus is the production of valuable pharmaceutical compounds from plant cell cultures, specifically the production of important anti-cancer drug molecules from cell cultures of Catharanthus roseus.

fac Dr. Shashi Murthy
Associate Professor

Dr. Murthy’s research areas include microfluidic cell separation, nanoscale probes for cell stimulation, and biopassive/bioactive coatings for neurological implants.

fac Dr. Courtney Pfluger
Assistant Academic Specialist

Gateway Faculty with a focus on chemical engineering

fac Dr. Thomas Webster
Professor & Chair

Design, synthesis, and evaluation of nanomaterials for various medical applications, including self-assembled chemistries, nanoparticles, nanotubes, and nanostructured surfaces