You are here


Katherine S. Ziemer

Acting Vice Chancellor for Undergraduate Education and Experiential Learning
451 Snell Engineering Center
360 Huntington Avenue
Boston, MA 02115


Wouldn’t it be cool to have crystal-clear cell phone communications with one tenth as many towers? How about being able to toss a handful of pebble-sized devices into the depths of the ocean and record marine activity, sense the presence of undersea earthquakes, locate shipwrecks, and track ships and submarines? Would you like to have a device the size of a cherry tomato that would sit on the dashboard of your car and detect airborne pollutants, sense unusual vibrations in the engine, communicate with satellites for on-board directions, and let you know when you are too close to the car in front of you? One approach to engineering these applications is to create a next generation of electronic devices based on multifunctional materials – that is, create a single device that interacts with its environment mechanically, electronically, optically, and magnetically. The functional integration of different materials at the atomic level presents many challenges to material scientists and engineers. But the potential of these next-generation electronic devices is open to the imagination.

Dr. Ziemer’s research involves engineering surfaces in order to integrate wide bandgap semiconductors with functional and multi-functional oxides, organic molecules, and/or biomaterials. Dr. Ziemer’s group, in the Interface Engineering Laboratory, takes advantage of the ultra-high vacuum environment to study, at the atomic level, the growth and processing of thin films and nanostructures. This “surface engineering” is based on the hypothesis that understanding the atomic-level interactions at a surface will lead to developing processes to create new materials and to effectively interface different materials for new functionalities. The tools used for growth and formation mechanism studies are solid source effusion cells, plasma sources, ion sources, atom sources, and the in-situ analysis tools of reflection high-energy electron diffraction (RHEED), Auger electron spectroscopy (AES), and x-ray photoelectron spectroscopy (XPS). The general approach is shown in Figure 1. Current projects include:

  • integration of magnetic barium hexaferrite with silicon carbide for self-biasing circulators to enhance the power and portability of microwave frequency communications
  • integration of multi-functional lead zirconium titanate with silicon carbide and gallium nitride for novel multi-functional devices
  • integration of live bacteria with gallium nitride for self-repairing, self-calibrating biosensors


  • B.S. (Chemical Engineering) Virginia Tech, 1989
  • Ph.D. (Chemical Engineering) West Virginia University, 2001

Research & Scholarship Interests

Engineering surfaces in order to integrate wide bandgap semiconductors with functional and multi-functional oxides, organic molecules, and/or biomaterials
Affiliated With

Department Research Areas

College Research Initiatives

Honors & Awards

  • 2015 AIChE Fellow
  • 2014 COE Faculty Fellow

Selected Publications

  • G.M. Uddin, G. Moeen, K.S. Ziemer, A. Zeid, S. Kamarthi, Process Model-Based Analysis of Highly Crystalline and Chemically Pure Molecular Beam Epitaxy of MgO (111) Nano-Thin Films on 6H-SiC (0001) Substrates, International Journal of Nanomanufacturing, 11(1-2), 2015, 25-45
  • E. Alpaslan, H. Yazici, N. Golshan, K.S. Ziemer, T.J. Webster, Dextran Coated Cerium Oxide Nanoparticles for Inhibiting Bone Cancer Cell Functions, Biomaterials Science: Processing, Properties and Applications V, Ceramic Transactions, 254,
  • 2015, 187
  • S. Ni, L. Sun, B. Ercan, L. Lui, K.S. Ziemer, T.J. Webster, A Mechanism for the Enhanced Attachment and Proliferation of Fibroblasts on Anodized 316L Stainless Steel with Nano-Pit Arrays, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 102(6), 2014, 1297-1303
  • B. Hu, Y. Chen, Z. Su, S. Bennett, L. Burns, G. Uddin, K.S. Ziemer, V.G. Harris, Magnetocrystalline Anisotropy and FMR Linewidth of Zr and Zn-Doped Ba-Hexaferrite Films Grown on MgO (111), IEEE Transactions on Magnetics, 49(7), 2013, 4234-4237
  • G.M. Uddin, K.S. Ziemer, B. Sun, A. Zeid, S. Kamarthi, Monte Carlo Study of the High Temperature Hydrogen Cleaning Process of 6H-Silicon Carbide for Subsequent Growth of Nano Scale Metal Oxide Films, International Journal of Nanomanufacturing, 9(5-6), 2013, 407-430
  • V.K. Lazarov, Z. Cai, K. Yoshida, K.H. Zhang, M. Weinert, K.S. Ziemer, P.J. Hasnip, Dynamically Stabilized Growth of Polar Oxides: The Case of MgO (111), Physical Review Letters , 107(5), 2011, 056101

Related News

December 4, 2017

Chemical Engineering undergraduate student Emma Kaeli shares her research experiences: In my first year here at Northeastern, I made one of the best decisions I have made yet—getting involved...

April 11, 2016

ChE Professor Katherine S. Ziemer has been named the Vice Provost for Curriculum at Northeastern University for the next three years.

December 7, 2015

Five ChE students were invited to attend the 2015 AIChE Gala in NYC to celebrate the Center for Chemical Process Safety’s 30th anniversary.

Related Events