che

Richard West

faculty photo Assistant Professor
Department of Chemical Engineering
 
Office: 463 SN
Phone: 617.373-5163
r.west@neu.edu

Education:

  • B.A., M.Eng. (Chemical Engineering) University of Cambridge, 2004
  • Ph.D. (Chemical Engineering) University of Cambridge, 2009
  • Postdoctoral Research Associate, Massachusetts Institute of Technology, 2008-2011

Expertise:

  • Kinetics
  • Multiscale Modeling

Research Focus/Background:

The primary focus of my research is the development of detailed microkinetic models for complex reacting systems.

Our approach is to automate the discovery of reaction pathways, and the calculation of key parameters using ab initio quantum chemistry calculations. These kinetic models will link to multi-scale models of the reactor systems so that the overall process can be understood and optimized as a whole.

This approach towards microkinetic model development will contribute to two separate areas of catalytic materials research: the understanding of flame aerosol catalyst synthesis, and the optimization and understanding of catalytic processes, leading to catalyst design and discovery.

Selected Publications:

  • “Predicting solvation energies for kinetic modeling.” A. Jalan, R. W. Ashcraft, R. H. West, and W. H. Green. Annu. Rep. Prog. Chem., Sect. C, 106, 211–258, (2010). doi:10.1039/b811056p
  • “A detailed model for the sintering of polydispersed nanoparticle agglomerates.” M. Sander, R. H. West, M. S. Celnik, and M. Kraft. Aerosol Sci. Technol., 43, 978–989, (2009). doi:10.1080/02786820903092416
  • “First-principles thermochemistry for the combustion of a TiCl4 and AlCl3 mixture.” R. Shirley, Y. Liu, T. S. Totton, R. H. West, and M. Kraft. J. Phys. Chem. A, 113, 13790–13796, (2009). doi:10.1021/jp905244w
  • “First-principles thermochemistry for silicon species in the decomposition of tetraethoxysilane.” W. Phadungsukanan, S. Shekar, R.A. Shirley, M. Sander, R.H. West, and M. Kraft. J. Phys. Chem. A, 113(31):9041—9049, (2009). doi:10.1021/jp905494s
  • “A detailed kinetic model for combustion synthesis of titania from TiCl4.” R.H. West, R.A. Shirley, M. Kraft, C.F. Goldsmith, and W.H. Green. Combust. Flame, 156, 1764–1770, (2009). doi:10.1016/j.combustflame.2009.04.011
  • “A statistical approach to develop a detailed soot growth model using PAH characteristics.” A. Raj, M.S. Celnik, R.A. Shirley, M. Sander, R.I.A. Patterson, R.H. West, and M. Kraft. Combust. Flame, 156, 896–913, (2009). doi:10.1016/j.combustflame.2009.01.005
  • “Modelling soot formation in a premixed flame using an aromatic-site soot model and an improved oxidation rate.” M.S. Celnik, M. Sander, A. Raj, R.H. West, and M. Kraft. Proc. Combust. Inst., 32, 639–646, (2009). doi:10.1016/j.proci.2008.06.062
  • “Aromatic site description of soot particles.” M.S. Celnik, A. Raj, R.H. West, R.I. Patterson, and M. Kraft. Combust. Flame, 155, 161–180, (2008). doi:10.1016/j.combustflame.2008.04.011
  • “Modelling gas-phase synthesis of single-walled carbon nanotubes on iron catalyst particles.” M.S. Celnik, R.H. West, N.M. Morgan, M. Kraft, A. Moisala, J. Wen, W.H. Green, and H. Richter. Carbon, 46, 422–433, (2008). doi:10.1016/j.carbon.2007.12.004
  • “Toward a comprehensive model of the synthesis of TiO2 particles from TiCl4.” R.H. West, M.S. Celnik, O.R. Inderwildi, M. Kraft, G.J.O. Beran, and W.H. Green. Ind. Eng. Chem. Res., 46, 6147–6156, (2007). doi:10.1021/ie0706414
  • “First-principles thermochemistry for the production of TiO2 from TiCl4.” R.H. West, G.J.O. Beran, W.H. Green, and M. Kraft. J. Phys. Chem. A, 111, 3560–3565, (2007). doi:10.1021/jp0661950