che

Thomas Webster

faculty photo Professor and Chair
Department of Chemical Engineering
 
Office: 313 SN
Phone: 617.373-2989
th.webster@neu.edu
Webster Nanomedicine Lab

Education:

  • B.S. (Chemical Engineering) University of Pittsburgh, 1995
  • Ph.D. (Biomedical Engineering) Rensselaer Polytechnic Institute, 2000

Expertise:

  • Biomaterials
  • Nanomaterials

Research Focus/Background:

The primary focus of our research is the design, synthesis, and evaluation of nanomaterials for various medical applications. This includes self-assembled chemistries, nanoparticles, nanotubes, and nanostructured surfaces. Medical applications include inhibiting bacteria growth, inflammation, and promoting tissue growth. Tissues of particular interest are bone, cartilage, skin, nervous system, bladder, cardiovascular, and vascular. There is also an interest in anti-cancer applications where nanomaterials can be used to decrease cancer cell functions without the use of pharmaceutical agents. There is also a large interest in developing in situ sensors which can sense biological responses to medical devices and respond in real time to ensure implant success. Lastly, there is an interest in understanding the environmental and human health toxicity of nanomaterials.

Selected Publications:

  • M. Zile, S. Puckett, and T.J. Webster, “Nanostructured titanium promotes keratinocyte density,” Journal of Biomedical Materials Research Part A, 97A(1): 59-65 (2011).
  • D. Gorth, D. Rand, T.J. Webster, “Silver nanoparticle toxicity in Drosophila: Size does matter”, International Journal of Nanomedicine, 6:343-350 (2011).
  • M. Machado, D. Cheng, K. Tarquinio, and T.J. Webster, “Nanotechnology: Pediatric applications,” Pediatric Research, 67(5):500-504 (2010).
  • S. Puckett, E. Taylor, T. Raimondo, and T.J. Webster, “The relationship between the nanostructure of titanium surfaces and bacterial attachment,” Biomaterials, 31(4): 706-713 (2010).
  • N. Tran and T.J. Webster, “Magnetic nanoparticles: Biomedical applications and challenges,” Journal of Materials Chemistry, 20(40): 8760-8767 (2010).
  • P. Tran, L. Zhang and T.J. Webster, “Carbon nanofibers and carbon nanotubes in regenerative medicine,” Advanced Drug Delivery Reviews, 61(12): 1097-114 (2009).
  • L. Zhang and T. J. Webster, “Nanotechnology and nanomaterials: Promises for improved tissue regeneration,” NanoToday, 4(1): 66-80 (2009).
  • S. Sirivisoot and T.J. Webster, “Multiwalled carbon nanotubes enhance electrochemical properties of titanium to determine in situ bone formation,” Nanotechnology, 19(29): 295101-295113 (2008).
  • J. Lu, M. Rao, N. C. MacDonald, D. Khang, T.J. Webster, “Improved endothelial cell adhesion and proliferation on patterned titanium surfaces with rationally designed, micrometer to nanometer features,” Acta Biomaterialia, 4(1): 192-201 (2008).
  • D. Khang, S.Y. Kim, P. Liu-Synder, G.T.R. Palmore, S.M. Durbin, T.J. Webster, “Enhanced fibronectin adsorption on carbon nanotubes/poly(carbonate) urethane: independent role of surface nano roughness and associated surface energy,” Biomaterials, 28(32):4745-4768 (2007).
  • H. Liu and T.J. Webster, “Nanomedicine for implants: A review of studies and necessary experimental tools,” Biomaterials, 28(2): 354-369 (2007).
  • S. Sirivisoot, C. Yao, X. Xiao, B. W. Sheldon, T.J. Webster, “Greater osteoblast functions on multiwalled carbon nanotubular titanium for orthopedics applications,” Nanotechnology, 18(36):365102-365112 (2007).
  • P. Liu-Synder and T.J. Webster, “Designing drug-delivery systems for the nervous system using nanotechnology: opportunities and challenges,” Expert Review of Medical Devices, 3(6):683-687 (2006).