You are here

th.webster@northeastern.edu

Faculty Profile

Thomas Webster

Professor and Department Chair, Chemical Engineering
Art Zafiropoulo Chair in Engineering
Affiliated Faculty, Bioengineering
617.373.2989
313 Snell Engineering Center
360 Huntington Avenue
Boston, MA 02115

Biography

Joined the Chemical Engineering Department in Fall 2012.

The primary focus of our research is the design, synthesis, and evaluation of nanomaterials for various medical applications. This includes self-assembled chemistries, nanoparticles, nanotubes, and nanostructured surfaces. Medical applications include inhibiting bacteria growth, inflammation, and promoting tissue growth. Tissues of particular interest are bone, cartilage, skin, nervous system, bladder, cardiovascular, and vascular. There is also an interest in anti-cancer applications where nanomaterials can be used to decrease cancer cell functions without the use of pharmaceutical agents. There is also a large interest in developing in situ sensors which can sense biological responses to medical devices and respond in real time to ensure implant success. Lastly, there is an interest in understanding the environmental and human health toxicity of nanomaterials.

Education

  • B.S. (Chemical Engineering) University of Pittsburgh, 1995
  • Ph.D. (Biomedical Engineering) Rensselaer Polytechnic Institute, 2000

Research & Scholarship Interests

design, synthesis, and evaluation of nanomaterials for various medical applications, including self-assembled chemistries, nanoparticles, nanotubes, and nanostructured surfaces
Affiliated With

Department Research Areas

College Research Initiatives

Honors & Awards

  • Fellow, American Institute for Medical and Biological Engineers
  • Fellow, American Society for Nanomedicine
  • Fellow, Biomaterials Science and Engineering
  • Fellow, Biomedical Engineering Society
  • Fellow, Ernst Strungmann Foundation
  • Fellow, International College of Fellows - Biomaterials Science and Engineering

Selected Publications

  • M. Zile, S. Puckett, and T.J. Webster, “Nanostructured titanium promotes keratinocyte density,” Journal of Biomedical Materials Research Part A, 97A(1): 59-65 (2011).
  • D. Gorth, D. Rand, T.J. Webster, “Silver nanoparticle toxicity in Drosophila: Size does matter”, International Journal of Nanomedicine, 6:343-350 (2011).
  • M. Machado, D. Cheng, K. Tarquinio, and T.J. Webster, “Nanotechnology: Pediatric applications,” Pediatric Research, 67(5):500-504 (2010).
  • S. Puckett, E. Taylor, T. Raimondo, and T.J. Webster, “The relationship between the nanostructure of titanium surfaces and bacterial attachment,” Biomaterials, 31(4): 706-713 (2010).
  • N. Tran and T.J. Webster, “Magnetic nanoparticles: Biomedical applications and challenges,” Journal of Materials Chemistry, 20(40): 8760-8767 (2010).
  • P. Tran, L. Zhang and T.J. Webster, “Carbon nanofibers and carbon nanotubes in regenerative medicine,” Advanced Drug Delivery Reviews, 61(12): 1097-114 (2009).
  • L. Zhang and T. J. Webster, “Nanotechnology and nanomaterials: Promises for improved tissue regeneration,” NanoToday, 4(1): 66-80 (2009).
  • S. Sirivisoot and T.J. Webster, “Multiwalled carbon nanotubes enhance electrochemical properties of titanium to determine in situ bone formation,” Nanotechnology, 19(29): 295101-295113 (2008).
  • J. Lu, M. Rao, N. C. MacDonald, D. Khang, T.J. Webster, “Improved endothelial cell adhesion and proliferation on patterned titanium surfaces with rationally designed, micrometer to nanometer features,” Acta Biomaterialia, 4(1): 192-201 (2008).
  • D. Khang, S.Y. Kim, P. Liu-Synder, G.T.R. Palmore, S.M. Durbin, T.J. Webster, “Enhanced fibronectin adsorption on carbon nanotubes/poly(carbonate) urethane: independent role of surface nano roughness and associated surface energy,” Biomaterials, 28(32):4745-4768 (2007).
  • H. Liu and T.J. Webster, “Nanomedicine for implants: A review of studies and necessary experimental tools,” Biomaterials, 28(2): 354-369 (2007).
  • S. Sirivisoot, C. Yao, X. Xiao, B. W. Sheldon, T.J. Webster, “Greater osteoblast functions on multiwalled carbon nanotubular titanium for orthopedics applications,” Nanotechnology, 18(36):365102-365112 (2007).
  • P. Liu-Synder and T.J. Webster, “Designing drug-delivery systems for the nervous system using nanotechnology: opportunities and challenges,” Expert Review of Medical Devices, 3(6):683-687 (2006).
  • P. Tran, L. Sarin, R. Hurt, T.J. Webster, "Titanium Surfaces with Adherent Selenium Nanoclusters as a Novel Anti-cancer Orthopedic Material", Journal of Biomedical Materials Research, 93(4), 2014, 1417-1428
  • P. Tran, L. Sarin, R. Hurt, T.J. Webster, "Opportunities for Nanotechnology-enabled Bioactive Bone Implants", Journal of Materials Chemistry, 19, 2009, 2653-2659 
  • E.M. Christenson, K. Anseth, T.J. Webster, A.G. Mikos, et al., "Nanobiomaterial applications in orthopaedics", Journal of Orthopaedic Research 25, 2007, 11-22
  • G. Balasundaram, T.J. Webster, "A Perspective on Nanophase Materials for Orthopedic Implant Applications", Journal of Materials Chemistry, 16, 2006, 3737-3745 
  • A. Chun, J. G. Moralez, H. Fenniri, T.J. Webster, "Helical Rosette Nanotubes: A More Effective Orthopaedic Implant Material", Nanotechnology, 15, 2004, 234-239 
  • T.J. Webster, J.U. Ejiofor, "Increased Osteoblast Adhesion on Nanophase Metals", Biomaterials, 25, 2004, 4731-4739
See Google Scholar Profile for all publications »

Related News

February 15, 2018

ChE Chair and Professor Tom Webster will receive the Stevenson Biomaterials Lecture Award from Syracuse University on March 1, 2018, for his research which been has commercialized including several medical devices approved by the FDA and now in humans.

February 12, 2018

ChE Chair & Professor Tom Webster will be giving the Keynote Address for the 2nd Nanomedicine Conference 2018 in London on "The Next Generation of Implants: Using Nanomedicine Without Drugs to Control Cell Responses".

January 18, 2018

ChE affiliated faculty member, Dr. Mrityunjay Singh, will be honored at the 42nd International Conference and Exposition on Advanced Ceramics and Composites for “his long-term and outstanding contributions to science and technology of advanced ceramic materials and technologies, as well as his tireless efforts in mentoring students and young professionals, promoting and developing human network and collaborations among the materials community worldwide.”

Related Events

27
Mar

Raytheon Amphitheater, 240 EC

1:30 pm
04
Jun

Webinar

1:00 pm to 2:00 pm
25
Aug

Webinar

12:00 pm to 1:00 pm