You are here

Faculty Profile

Laura H. Lewis

447 Snell Engineering Center
360 Huntington Avenue
Boston, MA 02115


Joined the Chemical Engineering Department in Spring 2007.

Magnetic materials are ubiquitous in society, providing functionality to advanced devices, sensors and motors of every kind. As the magnetic force maintains strength over large distances, it allows for communication between components that are physically separated. This unique property permits the conversion of electrical to mechanical energy, assists microwave devices in telecommunications, transmits and distributes electric power and provides the basis for data storage systems. Magnetic materials are increasingly employed in medical applications, not only in NMR diagnostic equipment but also in specialized targeted cancer treatments and drug delivery protocols. It is anticipated that specialized engineering of magnetic materials and careful tailoring of their properties will enable a new generation of stronger and more responsive materials and devices that can significantly impact the way we use and store energy.

Current research is devoted to understanding magnetostructural transitions, which comprise simultaneous magnetic and structural phase changes. These transitions are attracting new attention due to the recognition that they underlie an assortment of “extreme” phenomena with important technological implications, such as Colossal Magnetoresistance (CMR) of interest for magnetic sensors in the recording industry; the giant Magnetocaloric Effect (MCE) under intense development for CFC-free magnetic refrigeration, and exceptional magnetomechanical behavior for actuators. Magnetostructural transitions may be driven by multitude of physical inputs (magnetic field, temperature, pressure, electric field), implying they may be manipulated to yield a tailored functional response. Our research employs advanced materials probes and techniques (magnetic measurement, advanced electron microscopy and specialized synchrotron scattering and spectroscopic techniques) that are available both at Northeastern University and at the Brookhaven National Laboratory in Long Island, New York.


  • B.A. (Physics with Specialization in Earth Sciences) University of California, San Diego, 1985
  • M.S. (Electronic Materials) Massachusetts Institute of Technology, 1988
  • Ph.D. (Materials Science and Engineering) University of Texas at Austin, 1993

Research & Scholarship Interests

Engineered magnetic and electronic nanomaterials; magnetostructural transitions (simultaneous magnetic and structural phase changes)
Affiliated With

Department Research Areas

College Research Initiatives

Selected Publications

  • Felix Jiménez-Villacorta, Joshua L. Marion, John T. Oldham, Maria. Daniil, Matthew A. Willard and Laura H. Lewis, "Magnetism-Structure Correlations during the ε→τ Transformation in Rapidly-Solidified MnAl Nanostructured Alloys", invited article, Metals2014, 4(1), 8-19; doi:10.3390/met4010008.
  • L. H. Lewis, A. Mubarok, E. Poirier, N. Bordeaux, P. Manchanda , A. Kashyap, R. Skomski, J. Goldstein,  F. E. Pinkerton, R. K. Mishra, R. C. Kubic Jr., K. Barmak, "Inspired by Nature: Developing Tetrataenite for Permanent Magnet Applications"; invited article, special issue on Rare Earth Replacement Magnets, J. Phys.: Condens. Matter 26 064213 doi:10.1088/0953-8984/26/6/064213 2014.
  • Laura H. Lewis and Félix Jiménez-Villacorta, "Perspectives on Permanent Magnetic Materials for Energy Conversion and Power Generation", invited review article, Metallurgical and Materials Transactions A, July 2012.
  • K. Barmak, J. Kim, L. H. Lewis, K. R. Coffey, M. F. Toney, A. J. Kellock, J. Thiele, "On the Relationship of Magnetocrystalline Anisotropy and Stoichiometry in Epitaxial L10 CoPt (001) and FePt (001) Thin Films", J. Appl. Phys., 98 033904 (2005).
  • B.D. Plouffe, S.K. Murthy, L.H. Lewis "Fundamentals and Application of Magnetic Particles in Cell Isolation and Enrichment: A Review, Reports on Progress in Physics", 78(1), 2015, 016601 
  • L.H. Lewis, F.E. Pinkerton, et al. "De Magnete et Meteorite: Cosmically-motivated Materials", IEEE Magnetics Letters, 5, 2014 
  • R. McCallum, L.H. Lewis, R. Skomski, M.J. Kramer, I.E. Anderson "Practical Aspects of Modern and Future Permanent Magnets", Annual Review of Materials Research, 44(1), 2014, 451-477 
  • L.H. Lewis, F. Jiménez-Villacorta "Perspectives on Permanent Magnetic Materials for Energy Conversion and Power Generation", Metallurgical and Materials Transactions A, 44(1), 2013, 2-20 
  • G. Srajer, L.H. Lewis, S.D. Bader, et al. "Advances in Nanomagnetism via X-ray Techniques", Review Article, Journal of Magnetism and Magnetic Materials, 307(1), 2006, 1-31

Related News

October 7, 2016

ChE & MIE Professor Laura Lewis was selected as an American Physical Society fellow.

August 31, 2016

ChE & MIE Professor Laura Lewis will give a plenary speech on "Multivariable tuning and optimization in selected magnetostructural systems" at the 7th International Conference on...

April 20, 2016

ChE & MIE Professor Laura Lewis was awarded a $200K NSF grant for "Sustainable Permanent Magnets For Advanced Applications".